Published: Open microscopy in the life sciences: Quo Vadis?

J. Hohlbein, B. Diederich, B. Marsikova, E.G. Reynaud, S. Holden, W. Jahr, R. Haase, and K. Prakash, Nature Methods, 19, 1020, 2022, [link], preprint on arXiv, 2021, [link]

Light microscopy enables researchers to observe cellular mechanisms with high spatial and temporal resolution. However, the increasing complexity of current imaging technologies, coupled with financial constraints of potential users, hampers the general accessibility and potential reach of cutting-edge microscopy. Open microscopy can address this issue by making well-designed and well-documented hardware and software solutions openly available to a broad audience. In this Comment, we provide a definition of open microscopy and present recent projects in the field. We discuss current and future challenges of open microscopy and their implications for funders, policymakers, researchers and scientists. We believe that open microscopy requires a holistic approach. Sample preparation, designing and building of hardware components, writing software, data acquisition and data interpretation must go hand in hand to enable interdisciplinary and reproducible science to the benefit of society.

Published: Enabling single-molecule localization microscopy in turbid food emulsions

A. Jabermoradi, S. Yang, M. Gobes, J.P.M. van Duynhoven, and J. Hohlbein, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 380, 20200164, 2022,  [link], preprint on bioRxiv: [link]

Turbidity poses a major challenge for the microscopic characterization of food systems. Local mismatches in refractive indices, for example, lead to significant image deterioration along sample depth. To mitigate the issue of turbidity and to increase the accessible optical resolution in food microscopy, we added adaptive optics (AO) and flat-field illumination to our previously published open microscopy framework, the miCube. In the detection path, we implemented AO via a deformable mirror to compensate aberrations and to modulate the emission wavefront enabling the engineering of point spread functions (PSFs) for single-molecule localization microscopy (SMLM) in three dimensions. As a model system for a non-transparent food colloid such as mayonnaise, we designed an oil-in-water emulsion containing the ferric ion binding protein phosvitin commonly present in egg yolk. We targeted phosvitin with fluorescently labelled primary antibodies and used PSF engineering to obtain two- and three-dimensional images of phosvitin covered oil droplets with sub 100 nm resolution. Our data indicated that phosvitin is homogeneously distributed at the interface. With the possibility to obtain super-resolved images in depth, our work paves the way for localizing biomacromolecules at heterogeneous colloidal interfaces in food emulsions.

This article is part of the Theo Murphy meeting issue ‘Super-resolution structured illumination microscopy (part 2)’.

Published: Single-molecule localization microscopy as an emerging tool to probe multiscale food structures

J. Hohlbein, Food Structure, 30, 100236, 2021, [link]

Optical microscopy is an indispensable tool to characterize the microstructure of foods at ambient conditions. Depending on both the wavelength of light used to illuminate the sample and the opening angle of the microscope objective, the achievable resolution is limited to around 200 nm. This so-called classical diffraction limit implies that smaller structural features cannot be resolved or separated from each other. As many food structures are ultimately defined by the molecular interactions of single proteins or single molecules, the classical resolution is insufficient to reveal structural details in the (tens of) nanometer range. Intriguingly, recent advancements in imaging techniques originating mostly in the (biomedical) life sciences have been closing the gap, pushing the resolution towards true molecular resolution. In this perspective, we want to highlight some of these emerging techniques and provide an outlook on potential future applications.

Published: Integrating engineered point spread functions into the phasor-based single-molecule localization microscopy framework

K.J.A. Martens, A. Jabermoradi, S. Yang, and J. Hohlbein, Methods, 193, 2021, [link], previously on bioRxiv [link]

In single-molecule localization microscopy (SMLM), the use of engineered point spread functions (PSFs) provides access to three-dimensional localization information. The conventional approach of fitting PSFs with a single 2-dimensional Gaussian profile, however, often falls short in analyzing complex PSFs created by placing phase masks, deformable mirrors or spatial light modulators in the optical detection pathway. Here, we describe the integration of PSF modalities known as double-helix, saddle-point or tetra-pod into the phasor-based SMLM (pSMLM) framework enabling fast CPU based localization of single-molecule emitters with sub- pixel accuracy in three dimensions. For the double-helix PSF, pSMLM identifies the two individual lobes and uses their relative rotation for obtaining z-resolved localizations. For the analysis of saddle-point or tetra-pod PSFs, we present a novel phasor-based deconvolution approach entitled circular-tangent pSMLM. Saddle-point PSFs were experimentally realized by placing a deformable mirror in the Fourier plane and modulating the incoming wavefront with specific Zernike modes. Our pSMLM software package delivers similar precision and recall rates to the best-in-class software package (SMAP) at signal-to-noise ratios typical for organic fluorophores and achieves localization rates of up to 15 kHz (double-helix) and 250 kHz (saddle-point/tetra-pod) on a standard CPU. We further integrated pSMLM into an existing software package (SMALL-LABS) suitable for single-particle imaging and tracking in environments with obscuring backgrounds. Taken together, we provide a powerful hardware and software environment for advanced single-molecule studies.

News: New lab members

For the start of the academic year, we welcome new lab members: Erwin Dijkstra started with his MSc thesis on spectrally resolved super-resolution imaging, Victor Pools will help us as a research assistant with cloning and single-molecule particle tracking, and Konstantin Speckner is taking a short break from his PhD in Bayreuth to learn more about single-molecule and single-cell techniques. Welcome on board!

Published: Probing DNA – transcription factor interactions using single-molecule fluorescence detection in nanofluidic devices

M. Fontana, Š. Ivanovaite , S. Lindhoud, E. van der Wijk, K. Mathwig, W. van den Berg, D. Weijers, and J. Hohlbein, Advanced Biology, 2100953, 2021, [link], preprint: bioRxiv, 2021, [link]

Single-molecule fluorescence detection offers powerful ways to study biomolecules and their complex interactions. Here, nanofluidic devices and camera-based, single-molecule Förster resonance energy transfer (smFRET) detection are combined to study the interactions between plant transcription factors of the auxin response factor (ARF) family and DNA oligonucleotides that contain target DNA response elements. In particular, it is shown that the binding of the unlabeled ARF DNA binding domain (ARF-DBD) to donor and acceptor labeled DNA oligonucleotides can be detected by changes in the FRET efficiency and changes in the diffusion coefficient of the DNA. In addition, this data on fluorescently labeled ARF-DBDs suggest that, at nanomolar concentrations, ARF-DBDs are exclusively present as monomers. In general, the fluidic framework of freely diffusing molecules minimizes potential surface-induced artifacts, enables high-throughput measurements, and proved to be instrumental in shedding more light on the interactions between ARF-DBDs monomers and between ARF-DBDs and their DNA response element

News: Presentation on open microscopy and in-vivo single-molecule CRISPR-Cas

In January 2021, I had the pleasure to present some of our recent work as part of the Imaging ONEWORLD series initiated by the Royal Society of Microscopy. Topics I talked about include: open-source microscopy (#miCube), accelerated single-molecule localisation analysis (#SMLM) using phasor analysis, diffusion distribution analysis (#anaDDA), and in vivo single-particle tracking of CRISPR-Cas9.

News: NWO Take-off (phase I) granted & new lab members

Happy to share the news that we received a NWO Take-off (phase 1) grant for “Spectrally-resolved single-molecule localization microscopy to go”. Looking forward working with Niels and the people from Cairn Research Ltd, Confocal.nl, Wageningen University & Research on this exciting project to bring more colours into microscopy. 

We further say good bye to Mattia, who will continue working with my new colleague Dr. Sonja Schmid (see her new and shiny webpage here). Hope we can get all those great work of yours published soon!

We also welcome two new BSc students, Mink Neeleman and Casper Peters, who will work on CRISPR-Cas, live cell imaging and microfluidics. Welcome on board!

 

Published: Quantitative spatiotemporal mapping of lipid and protein oxidation in mayonnaise

S. Yang, A.A. Verhoef, D.W.H Merkx, J.P.M. van Duynhoven, and J. Hohlbein, Antioxidants, 9, 1278, 2020, [link]

Lipid oxidation in food emulsions is mediated by emulsifiers in the water phase and at the oil-water interface. To unravel the physico-chemical mechanisms and to obtain local lipid and protein oxidation rates, we used confocal laser scanning microscopy (CLSM), thereby monitoring changes in both the fluorescence emission of a lipophilic dye BODIPY 665/676 and protein auto-fluorescence. Our data show that the removal of lipid-soluble antioxidants from mayonnaises promotes lipid oxidation within oil droplets as well as protein oxidation at the oil-water interface. Furthermore, we demonstrate that ascorbic acid acts as either a lipid antioxidant or pro-oxidant depending on the presence of lipid-soluble antioxidants. The effects of antioxidant formulation on local lipid and protein oxidation rates were all statistically significant (p < 0.0001). The observed protein oxidation at the oil-water interface was spatially heterogeneous, which is in line with the heterogeneous distribution of lipoprotein granules from the egg yolk used for emulsification. The impact of the droplet size on local lipid and protein oxidation rates was significant (p < 0.0001) but minor compared to the effects of ascorbic acid addition and lipid-soluble antioxidant depletion. The presented results demonstrate that CLSM can be applied for unraveling the roles of colloidal structure and transport in mediating lipid oxidation in complex food emulsions.

antioxidants-09-01278-g001

Published: Extracting transition rates in particle tracking using analytical diffusion distribution analysis

J. Vink, S.J.J. Brouns, and J. Hohlbein, Biophysical Journal, 119, 1970–83, 2020, [link], preprint: bioRxiv, 2020, [link]

Single-particle tracking is an important technique in the life sciences to understand the kinetics of biomolecules. The analysis of apparent diffusion coefficients in vivo, for example, enables researchers to determine whether biomolecules are moving alone, as part of a larger complex, or are bound to large cellular components such as the membrane or chromosomal DNA. A remaining challenge has been to retrieve quantitative kinetic models, especially for molecules that rapidly switch between different diffusional states. Here, we present analytical diffusion distribution analysis (anaDDA), a framework that allows for extracting transition rates from distributions of apparent diffusion coefficients calculated from short trajectories that feature less than 10 localizations per track. Under the assumption that the system is Markovian and diffusion is purely Brownian, we show that theoretically predicted distributions accurately match simulated distributions and that anaDDA outperforms existing methods to retrieve kinetics, especially in the fast regime of 0.1–10 transitions per imaging frame. AnaDDA does account for the effects of confinement and tracking window boundaries. Furthermore, we added the option to perform global fitting of data acquired at different frame times to allow complex models with multiple states to be fitted confidently. Previously, we have started to develop anaDDA to investigate the target search of CRISPR-Cas complexes. In this work, we have optimized the algorithms and reanalyzed experimental data of DNA polymerase I diffusing in live Escherichia coli. We found that long-lived DNA interaction by DNA polymerase are more abundant upon DNA damage, suggesting roles in DNA repair. We further revealed and quantified fast DNA probing interactions that last shorter than 10 ms. AnaDDA pushes the boundaries of the timescale of interactions that can be probed with single-particle tracking and is a mathematically rigorous framework that can be further expanded to extract detailed information about the behavior of biomolecules in living cells.

EXeWam5X0AAYD3b