Published: Cooperative action of separate interaction domains promotes high-affinity DNA binding of Arabidopsis thaliana ARF transcription factors

M. Fontana, M. Roosjen, I. Crespo García, W. van den Berg, M. Malfois, R. Boer, D. Weijers, and J. Hohlbein, PNAS, 120, e2219916120, 2023, [link], pre-print on bioRxiv, [link]

The signaling molecule auxin coordinates many growth and development processes in plants, mainly through modulating gene expression. Transcriptional response is mediated by the family of auxin response factors (ARF). Monomers of this family recognize a DNA motif and can homodimerize through their DNA-binding domain (DBD), enabling cooperative binding to an inverted binding site. Most ARFs further contain a C-terminal PB1 domain that is capable of homotypic interactions and mediating interactions with Aux/IAA repressors. Given the dual role of the PB1 domain, and the ability of both DBD and PB1 domain to mediate dimerization, a key question is how these domains contribute to DNA-binding specificity and affinity. So far, ARF–ARF and ARF–DNA interactions have mostly been approached using qualitative methods that do not provide a quantitative and dynamic view on the binding equilibria. Here, we utilize a DNA binding assay based on single-molecule Förster resonance energy transfer (smFRET) to study the affinity and kinetics of the interaction of several Arabidopsis thaliana ARFs with an IR7 auxin-responsive element (AuxRE). We show that both DBD and PB1 domains of AtARF2 contribute toward DNA binding, and we identify ARF dimer stability as a key parameter in defining binding affinity and kinetics across AtARFs. Lastly, we derived an analytical solution for a four-state cyclic model that explains both the kinetics and the affinity of the interaction between AtARF2 and IR7. Our work demonstrates that the affinity of ARFs toward composite DNA response elements is defined by dimerization equilibrium, identifying this as a key element in ARF-mediated transcriptional activity.

Published: Enabling spectrally resolved single-molecule localization microscopy at high emitter densities

K.J.A. Martens, M. Gobes, E. Archontakis, N. Zijlstra, L. Albertazzi, and J. Hohlbein, Nano Letters, 22, 8618, 2022, [link], pre-print on bioRxiv, [link]

Single-molecule localization microscopy (SMLM) is a powerful super-resolution technique for elucidating structure and dynamics in the life- and material sciences. Simultaneously acquiring spectral information (spectrally resolved SMLM, sSMLM) has been hampered by several challenges: an increased complexity of the optical detection pathway, lower accessible emitter densities, and compromised spatio-spectral resolution. Here we present a single-component, low-cost implementation of sSMLM that addresses these challenges. Using a low-dispersion transmission grating positioned close to the image plane, the +1st diffraction order is minimally elongated and is analyzed using existing single-molecule localization algorithms. The distance between the 0th and 1st order provides accurate information on the spectral properties of individual emitters. This method enables a 5-fold higher emitter density while discriminating between fluorophores whose peak emissions are less than 15 nm apart. Our approach can find widespread use in single-molecule applications that rely on distinguishing spectrally different fluorophores under low photon conditions.

Published: Unravelling mechanisms of protein and lipid oxidation in mayonnaise at multiple length scales

S. Yang, M. Takeuchi, H. Friedrich, J.P.M. van Duynhoven, and J. Hohlbein, Food Chemistry, 402, 134417, 2023, [link], preprint on chemRxiv, 2022, [link]

In mayonnaise, lipid and protein oxidation are closely related and the interplay between them is critical for understanding the chemical shelf-life stability of mayonnaise. This is in particular the case for comprehending the role of low-density lipoprotein (LDL) particles acting as a main emulsifier. Here, we monitored oxidation and the concomitant aggregation of LDLs by bright-field light microscopy and cryogenic transmission electron microscopy. We further probed the formation of protein radicals and protein oxidation by imaging the accumulation of a water-soluble fluorescent spin trap and protein autofluorescence. The effect of variation of pH and addition of EDTA on the accumulation of the spin trap validated that protein radicals were induced by lipid radicals. Our data suggests two main pathways of oxidative protein radical formation in LDL particles: (1) at the droplet interface, induced by lipid free radicals formed in oil droplets, and (2) in the continuous phase induced by an independent LDL-specific mechanism.

Published: Open microscopy in the life sciences: Quo Vadis?

J. Hohlbein, B. Diederich, B. Marsikova, E.G. Reynaud, S. Holden, W. Jahr, R. Haase, and K. Prakash, Nature Methods, 19, 1020, 2022, [link], preprint on arXiv, 2021, [link]

Light microscopy enables researchers to observe cellular mechanisms with high spatial and temporal resolution. However, the increasing complexity of current imaging technologies, coupled with financial constraints of potential users, hampers the general accessibility and potential reach of cutting-edge microscopy. Open microscopy can address this issue by making well-designed and well-documented hardware and software solutions openly available to a broad audience. In this Comment, we provide a definition of open microscopy and present recent projects in the field. We discuss current and future challenges of open microscopy and their implications for funders, policymakers, researchers and scientists. We believe that open microscopy requires a holistic approach. Sample preparation, designing and building of hardware components, writing software, data acquisition and data interpretation must go hand in hand to enable interdisciplinary and reproducible science to the benefit of society.

Published: Enabling single-molecule localization microscopy in turbid food emulsions

A. Jabermoradi, S. Yang, M. Gobes, J.P.M. van Duynhoven, and J. Hohlbein, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 380, 20200164, 2022,  [link], preprint on bioRxiv: [link]

Turbidity poses a major challenge for the microscopic characterization of food systems. Local mismatches in refractive indices, for example, lead to significant image deterioration along sample depth. To mitigate the issue of turbidity and to increase the accessible optical resolution in food microscopy, we added adaptive optics (AO) and flat-field illumination to our previously published open microscopy framework, the miCube. In the detection path, we implemented AO via a deformable mirror to compensate aberrations and to modulate the emission wavefront enabling the engineering of point spread functions (PSFs) for single-molecule localization microscopy (SMLM) in three dimensions. As a model system for a non-transparent food colloid such as mayonnaise, we designed an oil-in-water emulsion containing the ferric ion binding protein phosvitin commonly present in egg yolk. We targeted phosvitin with fluorescently labelled primary antibodies and used PSF engineering to obtain two- and three-dimensional images of phosvitin covered oil droplets with sub 100 nm resolution. Our data indicated that phosvitin is homogeneously distributed at the interface. With the possibility to obtain super-resolved images in depth, our work paves the way for localizing biomacromolecules at heterogeneous colloidal interfaces in food emulsions.

This article is part of the Theo Murphy meeting issue ‘Super-resolution structured illumination microscopy (part 2)’.

Published: Single-molecule localization microscopy as an emerging tool to probe multiscale food structures

J. Hohlbein, Food Structure, 30, 100236, 2021, [link]

Optical microscopy is an indispensable tool to characterize the microstructure of foods at ambient conditions. Depending on both the wavelength of light used to illuminate the sample and the opening angle of the microscope objective, the achievable resolution is limited to around 200 nm. This so-called classical diffraction limit implies that smaller structural features cannot be resolved or separated from each other. As many food structures are ultimately defined by the molecular interactions of single proteins or single molecules, the classical resolution is insufficient to reveal structural details in the (tens of) nanometer range. Intriguingly, recent advancements in imaging techniques originating mostly in the (biomedical) life sciences have been closing the gap, pushing the resolution towards true molecular resolution. In this perspective, we want to highlight some of these emerging techniques and provide an outlook on potential future applications.

Published: Integrating engineered point spread functions into the phasor-based single-molecule localization microscopy framework

K.J.A. Martens, A. Jabermoradi, S. Yang, and J. Hohlbein, Methods, 193, 2021, [link], previously on bioRxiv [link]

In single-molecule localization microscopy (SMLM), the use of engineered point spread functions (PSFs) provides access to three-dimensional localization information. The conventional approach of fitting PSFs with a single 2-dimensional Gaussian profile, however, often falls short in analyzing complex PSFs created by placing phase masks, deformable mirrors or spatial light modulators in the optical detection pathway. Here, we describe the integration of PSF modalities known as double-helix, saddle-point or tetra-pod into the phasor-based SMLM (pSMLM) framework enabling fast CPU based localization of single-molecule emitters with sub- pixel accuracy in three dimensions. For the double-helix PSF, pSMLM identifies the two individual lobes and uses their relative rotation for obtaining z-resolved localizations. For the analysis of saddle-point or tetra-pod PSFs, we present a novel phasor-based deconvolution approach entitled circular-tangent pSMLM. Saddle-point PSFs were experimentally realized by placing a deformable mirror in the Fourier plane and modulating the incoming wavefront with specific Zernike modes. Our pSMLM software package delivers similar precision and recall rates to the best-in-class software package (SMAP) at signal-to-noise ratios typical for organic fluorophores and achieves localization rates of up to 15 kHz (double-helix) and 250 kHz (saddle-point/tetra-pod) on a standard CPU. We further integrated pSMLM into an existing software package (SMALL-LABS) suitable for single-particle imaging and tracking in environments with obscuring backgrounds. Taken together, we provide a powerful hardware and software environment for advanced single-molecule studies.

News: New lab members

For the start of the academic year, we welcome new lab members: Erwin Dijkstra started with his MSc thesis on spectrally resolved super-resolution imaging, Victor Pools will help us as a research assistant with cloning and single-molecule particle tracking, and Konstantin Speckner is taking a short break from his PhD in Bayreuth to learn more about single-molecule and single-cell techniques. Welcome on board!

Published: Probing DNA – transcription factor interactions using single-molecule fluorescence detection in nanofluidic devices

M. Fontana, Š. Ivanovaite , S. Lindhoud, E. van der Wijk, K. Mathwig, W. van den Berg, D. Weijers, and J. Hohlbein, Advanced Biology, 2100953, 2021, [link], preprint: bioRxiv, 2021, [link]

Single-molecule fluorescence detection offers powerful ways to study biomolecules and their complex interactions. Here, nanofluidic devices and camera-based, single-molecule Förster resonance energy transfer (smFRET) detection are combined to study the interactions between plant transcription factors of the auxin response factor (ARF) family and DNA oligonucleotides that contain target DNA response elements. In particular, it is shown that the binding of the unlabeled ARF DNA binding domain (ARF-DBD) to donor and acceptor labeled DNA oligonucleotides can be detected by changes in the FRET efficiency and changes in the diffusion coefficient of the DNA. In addition, this data on fluorescently labeled ARF-DBDs suggest that, at nanomolar concentrations, ARF-DBDs are exclusively present as monomers. In general, the fluidic framework of freely diffusing molecules minimizes potential surface-induced artifacts, enables high-throughput measurements, and proved to be instrumental in shedding more light on the interactions between ARF-DBDs monomers and between ARF-DBDs and their DNA response element

News: Presentation on open microscopy and in-vivo single-molecule CRISPR-Cas

In January 2021, I had the pleasure to present some of our recent work as part of the Imaging ONEWORLD series initiated by the Royal Society of Microscopy. Topics I talked about include: open-source microscopy (#miCube), accelerated single-molecule localisation analysis (#SMLM) using phasor analysis, diffusion distribution analysis (#anaDDA), and in vivo single-particle tracking of CRISPR-Cas9.