Published: Evaluating single-particle tracking by photo-activation localization microscopy (sptPALM) in Lactococcus lactis

S.P.B. van Beljouw, S. van der Els, K.J. A. Martens, M. Kleerebezem, P.A. Bron, J. Hohlbein, Physical Biology, 16, 035001, 2019, [link]

Lactic acid bacteria (LAB) are frequently used in food fermentation and are invaluable for the taste and nutritional value of the fermentation end-product. To gain a better understanding of underlying biochemical and microbiological mechanisms and cell-to-cell variability in LABs, single-molecule techniques such as single-particle tracking photo-activation localization microscopy (sptPALM) hold great promises but are not yet employed due to the lack of detailed protocols and suitable assays.

Here, we qualitatively test various fluorescent proteins including variants that are photoactivatable and therefore suitable for sptPALM measurements in Lactococcus lactis, a key LAB for the dairy industry. In particular, we fused PAmCherry2 to dCas9 allowing the successful tracking of single dCas9 proteins, whilst the dCas9 chimeras bound to specific guide RNAs retained their gene silencing ability in vivo. The diffusional information of the dCas9 without any targets showed different mechanistic states of dCas9: freely diffusing, bound to DNA, or transiently interacting with DNA. The capability of performing sptPALM with dCas9 in L. lactis can lead to a better, general understanding of CRISPR-Cas systems as well as paving the way for CRISPR-Cas based interrogations of cellular functions in LABs.

screenshot 2019-01-24 at 09.23.00

 

Published: High-throughput, non-equilibrium studies of single biomolecules using glass made nanofluidic devices

M. Fontana, C. Fijen, S. G. Lemay, K. Mathwig and J. Hohlbein, Lab on a Chip, 19, 79, 2019. [link]

Single-molecule detection schemes offer powerful means to overcome static and dynamic heterogeneity inherent to complex samples. However, probing biomolecular interactions and reactions with high throughput and time resolution remains challenging, often requiring surface-immobilized entities. Here, we introduce glass-made nanofluidic devices for the high-throughput detection of freely-diffusing single biomolecules by camera-based fluorescence microscopy. Nanochannels of 200 nm height confine the movement of biomolecules. Using pressure-driven flow through an array of parallel nanochannels and by tracking the movement of fluorescently labelled DNA oligonucleotides, we observe conformational changes with high throughput. In a device geometry featuring a T-shaped junction of nanochannels, we drive steady-state non-equilibrium conditions by continuously mixing reactants and triggering chemical reactions. We use the device to probe the conformational equilibrium of a DNA hairpin as well as to continuously observing DNA synthesis in real time. Our platform offers a straightforward and robust method for studying reaction kinetics at the single-molecule level.

TOC

 

Published: Phasor based single-molecule localization microscopy in 3D (pSMLM-3D): an algorithm for MHz localization rates using standard CPUs

K.J.A. Martens, A.N. Bader, S. Baas, B. Rieger, J. Hohlbein, The Journal of Chemical Physics, 148, 123311, 2018, [link]

We present a fast and model-free 2D and 3Dsingle-molecule localization algorithm that allows more than 3 million localizations per second on a standard multi-core CPU with localization accuracies in line with the most accurate algorithms currently available. Our algorithm converts the region of interest around a point spread function (PSF) to two phase vectors (phasors) by calculating the first Fourier coefficients in both x- and y-direction. The angles of these phasors are used to localize the center of the single fluorescent emitter, and the ratio of the magnitudes of the two phasors is a measure for astigmatism, which can be used to obtain depth information (z-direction). Our approach can be used both as a stand-alone algorithm for maximizing localization speed and as a first estimator for more time consuming iterative algorithms.

For the latest software implementation into thunderSTORM, please follow the [link].

PhasorFig

Publication: A single-molecule FRET sensor for monitoring DNA synthesis in real time

C. Fijen, A. Montón Silva, A. Hochkoeppler and J. Hohlbein, Physical Chemistry Chemical Physics, 19, 4222-4230, 2017, [link]

We developed a versatile DNA assay and framework for monitoring polymerization of DNA in real time and at the single-molecule level. The assay consists of an acceptor labelled DNA primer annealed to a DNA template that is labelled on its single stranded, downstream overhang with a donor fluorophore. Upon extension of the primer using a DNA polymerase, the overhang of the template alters its conformation from a random coil to the canonical structure of double stranded DNA. This conformational change increases the distance between the donor and the acceptor fluorophore and can be detected as a decrease in the Förster resonance energy transfer (FRET) efficiency between both fluorophores. Remarkably, the DNA assay does not require any modification of the DNA polymerase and albeit the simple and robust spectroscopic readout facilitates measurements even with conventional fluorimeters or stopped-flow equipment, single-molecule FRET provides additional access to parameters such as the processivity of DNA synthesis and, for one of the three DNA polymerases tested, the detection of binding and dissociation of the DNA polymerase to DNA. We furthermore demonstrate that primer extensions by a single base can be resolved.

fig1

Publication: Visualization of BRI1 and SERK3/BAK1 Nanoclusters in Arabidopsis Roots

J. Hohlbein and A.N. Kapanidis, Methods in Enzymology: Single-molecule Enzymology Part A & B, published online, 2016, [link] Monitoring conformational changes in DNA polymerases using single-molecule Förster resonance energy transfer (smFRET) has provided new tools for studying fidelity-related mechanisms that promote the rejection of incorrect nucleotides before DNA synthesis. In addition to the previously known open and the […]

S.J. Hutten, D.S. Hamers, M.A. an den Toorn, W. van Esse, A. Nolles, C.A. Bücherl, S.C. de Vries, J. Hohlbein, J.W. Borst, PLoS ONE 12(1): e0169905, 2017, [link]

Brassinosteroids (BRs) are plant hormones that are perceived at the plasma membrane (PM) by the ligand binding receptor BRASSINOSTEROID-INSENSITIVE1 (BRI1) and the co-receptor SOMATIC EMBRYOGENESIS RECEPTOR LIKE KINASE 3/BRI1 ASSOCIATED KINASE 1 (SERK3/BAK1). To visualize BRI1-GFP and SERK3/BAK1-mCherry in the plane of the PM, variable-angle epifluorescence microscopy (VAEM) was employed, which allows selective illumination of a thin surface layer. VAEM revealed an inhomogeneous distribution of BRI1-GFP and SERK3/BAK1-mCherry at the PM, which we attribute to the presence of distinct nanoclusters. Neither the BRI1 nor the SERK3/BAK1 nanocluster density is affected by depletion of endogenous ligands or application of exogenous ligands. To reveal interacting populations of receptor complexes, we utilized selective-surface observation—fluorescence lifetime imaging microscopy (SSO-FLIM) for the detection of Förster resonance energy transfer (FRET). Using this approach, we observed hetero-oligomerisation of BRI1 and SERK3 in the nanoclusters, which did not change upon depletion of endogenous ligand or signal activation. Upon ligand application, however, the number of BRI1-SERK3 /BAK1 hetero-oligomers was reduced, possibly due to endocytosis of active signalling units of BRI1-SERK3/BAK1 residing in the PM. We propose that formation of nanoclusters in the plant PM is subjected to biophysical restraints, while the stoichiometry of receptors inside these nanoclusters is variable and important for signal transduction.

Hutten_et_al2017

Publication: Fluorescence resonance energy transfer and protein-induced fluorescence enhancement as synergetic multi-scale molecular rulers

E. Ploetz, E. Lerner, F. Husada, M. Roelfs, S. Chung, J. Hohlbein, S. Weiss, T. Cordes, Scientific Reports, 6, 33257 , 2016, [link]

Advanced microscopy methods allow obtaining information on (dynamic) conformational changes in biomolecules via measuring a single molecular distance in the structure. It is, however, extremely challenging to capture the full depth of a three-dimensional biochemical state, binding-related structural changes or conformational cross-talk in multi-protein complexes using one-dimensional assays. In this paper we address this fundamental problem by extending the standard molecular ruler based on Förster resonance energy transfer (FRET) into a two-dimensional assay via its combination with protein-induced fluorescence enhancement (PIFE). We show that donor brightness (via PIFE) and energy transfer efficiency (via FRET) can simultaneously report on e.g., the conformational state of dsDNA following its interaction with unlabelled proteins (BamHI, EcoRV, T7 DNA polymerase gp5/trx). The PIFE-FRET assay uses established labelling protocols and single molecule fluorescence detection schemes (alternating-laser excitation, ALEX). Besides quantitative studies of PIFE and FRET ruler characteristics, we outline possible applications of ALEX-based PIFE-FRET for single-molecule studies with diffusing and immobilized molecules. Finally, we study transcription initiation and scrunching of E. coli RNA-polymerase with PIFE-FRET and provide direct evidence for the physical presence and vicinity of the polymerase that causes structural changes and scrunching of the transcriptional DNA bubble.

2016_Ploetz

Publication: A Quantitative Theoretical Framework For PIFE-FRET

E. Lerner, E. Ploetz, J. Hohlbein, T. Cordes, S. Weiss, The Journal of Physical Chemistry B, 120, 6401–6410, 2016, [link]

Single molecule protein induced fluorescence enhancement (PIFE) serves as a molecular ruler at molecular distances inaccessible to other spectroscopic rulers such as Förster-type resonance energy transfer (FRET) or photo-induced electron transfer. In order to provide two simultaneous measurements of two distances on different molecular length scales for the analysis of macromolecular complexes, we and others recently combined measurements of PIFE and FRET (PIFE-FRET) on the single molecule level. PIFE relies on steric hindrance of the fluorophore Cy3, which is covalently attached to a biomolecule of interest, to rotate out of an excited-state trans isomer to the cis isomer through a 90 deg intermediate. In this work, we provide a theoretical framework that accounts for relevant photophysical and kinetic parameters of PIFE-FRET, show how this framework allows the extraction of the fold-decrease in isomerization mobility from experimental data and how these results provide information on changes in the accessible volume of Cy3. The utility of this model is then demonstrated for experimental results on PIFE-FRET measurement of different protein-DNA interactions. The proposed model and extracted parameters could serve as a benchmark to allow quantitative comparison of PIFE effects in different biological systems.

 

EitanPife