Published: Precision and accuracy of single-molecule FRET measurements—a multi-laboratory benchmark study

B. Hellenkamp, S. Schmid, O. Doroshenko, O. Opanasyuk, R. Kühnemuth, S. Rezaei Adariani, B. Ambrose, M. Aznauryan, A. Barth, V. Birkedal, M.E. Bowen, H. Chen, T. Cordes, T. Eilert, C. Fijen, C. Gebhardt, M. Götz, G. Gouridis, E. Gratton, T. Ha, P. Hao, C.A. Hanke, A. Hartmann, J. Hendrix, L.L. Hildebrandt, V. Hirschfeld, J. Hohlbein, B.g Hua, C.G. Hübner, E. Kallis, A.N. Kapanidis, J.Y. Kim, G. Krainer, D.C. Lamb, N.K. Lee, E.A. Lemke, B. Levesque, M. Levitus, J.J. McCann, N. Naredi-Rainer, D. Nettels, T. Ngo, R. Qiu, N.C. Robb, C. Röcker, H. Sanabria, M. Schlierf, T. Schröder, B. Schuler, H. Seidel, L. Streit, J. Thurn, P. Tinnefeld, S. Tyagi, N. Vandenberk, A. Manuel Vera, K.R. Weninger, B. Wünsch, I.S. Yanez-Orozco, J. Michaelis, C.A.M. Seidel, T.D. Craggs, T. Hugel, Nature Methods, 15, 669, 2018, [link], preprint on arXiv: [link]

Single-molecule Förster resonance energytransfer (smFRET) is increasingly being used to determine distances, structures, and dynamics of biomolecules in vitro and in vivo. However, generalized protocols and FRET standards to ensure the reproducibility and accuracy of measurements of FRET efficiencies are currently lacking. Here we report the results of a comparative blind study in which 20 labs determined the FRET efficiencies (E) of several dye-labeled DNA duplexes. Using a unified, straightforward method, we obtained FRET efficiencies with s.d. between ± 0.02 and ± 0.05. We suggest experimental and computational procedures for converting FRET efficiencies into accurate distances, and discuss potential uncertainties in the experiment and the modeling. Our quantitative assessment of the reproducibility of intensity-based smFRET measurements and a unified correction procedure represents an important step toward the validation of distance networks, with the ultimate aim of achieving reliable structural models of biomolecular systems by smFRET-based hybrid methods.

News: The miCube moved to Github

Our open (single-molecule) microscopy project, the #miCube, is now on Github [link]!  The page shows a detailed and updated overview of the components, some information on phasor-based SMLM, and many links to similar open hardware projects.

 

Pre-print: DNA polymerase β fingers movement revealed by single-molecule FRET suggests a partially closed conformation as a fidelity checkpoint

C. Fijen, M. Mahmoud, R. Kaup, J. Towle-Weicksel, J. Sweasy, and J. Hohlbein, bioRxiv, 2018 [link]

The eukaryotic DNA polymerase βplays an important role in cellular DNA repair as it fills gaps in single nucleotide gapped DNA that result from removal of damaged bases. Since defects in DNA repair may lead to cancer and genetic instabilities, Pol β has been extensively studied, especially substrate binding and a fidelity-related conformational change called fingers closing. Here, we applied single-molecule Förster resonance energy transfer to study the conformational dynamics of Pol β. Using an acceptor labelled polymerase and a donor labelled DNA substrate, we measured distance changes associated with DNA binding and fingers movement. Our findings suggest that Pol β does not bend its gapped DNA substrate to the extent related crystal structures indicate: instead, bending seems to be significantly less profound. Furthermore, we visualized dynamic fingers closing in single Pol β-DNA complexes upon addition of complementary nucleotides and derived rates of conformational changes. Additionally, we provide evidence that the fingers close only partially when an incorrect nucleotide is bound. This ajar conformation found in Pol β, a polymerase of the X-family, suggests the existence of an additional fidelity checkpoint similar to what has been previously proposed for a member of the A-family, the bacterial DNA polymerase I.

2018_PolB_overview

News: Welcome to Meike Kronenberg and farewell to Carel Fijen

Meike joined the group for her BSc thesis and will work on DNA polymerase beta. Carel successfully defended his PhD thesis in March and decided to continue working on DNA polymerase beta by joining the Sweasy lab at Yale as a postdoctoral research assistent. All the best and we hope receiving new stocks soon!

News: Welcome to Andreas Hentrich and Hans Dekker…

…who joined the group for an 6 week internship (Andreas) and a short capita selecta (Hans). Andreas will try unifying some fragmented software packages for in vivo single particle tracking. Hans will push the limits of our ultrafast pSMLM algorithm for super-resolution microscopy.

Pre-print: Substrate conformational dynamics drive structure-specific recognition of gapped DNA by DNA polymerase

T.D. Craggs, M. Sustarsic, A. Plochowietz, M. Mosayebi, H. Kaju, A. Cuthbert, J. Hohlbein, L. Domicevica, P.C. Biggin, J.P. K. Doye, A.N. Kapanidis, bioRxiv, 2018 [link]

DNA-binding proteins utilisedifferent recognition mechanisms to locate their DNA targets. Some proteins recognise specific nucleotide sequences, while many DNA repair proteins interact with specific (often bent) DNA structures. While sequence-specific DNA binding mechanisms have been studied extensively, structure-specific mechanisms remain unclear. Here, we study structure-specific DNA recognition by examining the structure and dynamics of DNA polymerase I (Pol) substrates both alone and in Pol-DNA complexes. Using a rigid-body docking approach based on a network of 73 distance restraints collected using single-molecule FRET, we determined a novel solution structure of the singlenucleotide-gapped DNA-Pol binary complex. The structure was highly consistent with previous crystal structures with regards to the downstream primer-template DNA substrate; further, our structure showed a previously unobserved sharp bend (~120°) in the DNA substrate; we also showed that this pronounced bending of the substrate is present in living bacteria. All-atom molecular dynamics simulations and single-molecule quenching assays revealed that 4-5 nt of downstream gap-proximal DNA are unwound in the binary complex. Coarse-grained simulations on free gapped substrates reproduced our experimental FRET values with remarkable accuracy ( = -0.0025 across 34 independent distances) and revealed that the one-nucleotide-gapped DNA frequently adopted highly bent conformations similar to those in the Pol-bound state (ΔG 7 kT) or duplex (>> 10 kT) DNA. Our results suggest a mechanism by which Pol and other structure-specific DNA-binding proteins locate their DNA targets through sensing of the conformational dynamics of DNA substrates.

 

2018_CraggsBioRxivPic1.png

News: TA proposal awarded

Good news! The proposal “LocalBioFood: Localisation of bio-macromolecules in food matrices” submitted by Ilja Voets (TU/e) and our lab has been granted by the NWO innovation fund for chemistry [link].

Within the project, the three appointed PhD students will image different components in food, like proteins and carbohydrates, on a sub 100nm length scale using advanced fluorescence microscopy. The project is a collaboration between Eindhoven University of Technology, Wageningen University, Confocal.nl, Unilever and DSM.

Published: Phasor based single-molecule localization microscopy in 3D (pSMLM-3D): an algorithm for MHz localization rates using standard CPUs

K.J.A. Martens, A.N. Bader, S. Baas, B. Rieger, J. Hohlbein, The Journal of Chemical Physics, 148, 123311, 2018, [link]

We present a fast and model-free 2D and 3Dsingle-molecule localization algorithm that allows more than 3 million localizations per second on a standard multi-core CPU with localization accuracies in line with the most accurate algorithms currently available. Our algorithm converts the region of interest around a point spread function (PSF) to two phase vectors (phasors) by calculating the first Fourier coefficients in both x- and y-direction. The angles of these phasors are used to localize the center of the single fluorescent emitter, and the ratio of the magnitudes of the two phasors is a measure for astigmatism, which can be used to obtain depth information (z-direction). Our approach can be used both as a stand-alone algorithm for maximizing localization speed and as a first estimator for more time consuming iterative algorithms.

For the latest software implementation into thunderSTORM, please follow the [link].

PhasorFig

Pre-print: Simple nanofluidic devices for high-throughput, non-equilibrium studies at the single-molecule level

C. Fijen, M. Fontana, S.G. Lemay, K. Mathwig, J. Hohlbein, bioRxiv, 2017, [link]

Single-molecule detection schemesoffer powerful means to overcome static and dynamic heterogeneity inherent to complex samples. Probing chemical and biological interactions and reactions with high throughput and time resolution, however, remains challenging and often requires surface-immobilized entities. Here, utilizing camera-based fluorescence microscopy, we present glass-made nanofluidic devices in which fluorescently labelled molecules flow through nanochannels that confine their diffusional movement. The first design features an array of parallel nanochannels for high-throughput analysis of molecular species under equilibrium conditions allowing us to record 200.000 individual localization events in just 10 minutes. Using these localizations for single particle tracking, we were able to obtain accurate flow profiles including flow speeds and diffusion coefficients inside the channels. A second design featuring a T-shaped nanochannel enables precise mixing of two different species as well as the continuous observation of chemical reactions. We utilized the design to visualize enzymatically driven DNA synthesis in real time and at the single-molecule level. Based on our results, we are convinced that the versatility and performance of the nanofluidic devices will enable numerous applications in the life sciences.

 

News: Welcome to Sam van Beljouw…

…who joins the group for his MSc thesis. In collaboration with Dr. Klaus Mathwig (Pharmacy, Groningen), Dr. Peter van Baarlen (Host-Microbe Interactions, Wageningen) and Simon van der Els (NIZO food research and HMI, Wageningen), he will work towards monitoring bacterial conjugation in real time and at the single-cell level.