Accepted: Spatiotemporal heterogeneity of κ‐carrageenan gels investigated via single-particle-tracking fluorescence microscopy

K.J.A. Martens, J. van Duynhoven, and J. Hohlbein, Langmuir, 2020, [link]

Hydrogels made of the polysaccharide κ-carrageenan are widely used in the food and personal care industry as thickeners or gelling agents. These hydrogels feature dense regions embedded in a coarser bulk network, but the characteristic size and behavior of these regions has remained elusive. Here, we use single-particle-tracking fluorescence microscopy (sptFM) to quantitatively describe κ-carrageenan gels. Infusing fluorescent probes into fully gelated κ-carrageenan hydrogels resulted in two distinct diffusional behaviors. Obstructed self-diffusion of the probes revealed that the coarse network consists of κ-carrageenan strands with a typical diameter of 3.2 ± 0.3 nm leading to a nanoprobe diffusion coefficient of ~1-5∙10^-12 m2/s. In the dense network regions, we found a fraction with a largely decreased diffusion coefficient of ~1∙10^-13 m2/s. We also observed dynamic exchange between these states. The computation of spatial mobility maps from diffusional data indicated that the dense network regions have a characteristic diameter of ~1 µm and are itself mobile on the seconds-to-minutes timescale. sptFM provides an unprecedented view on spatiotemporal heterogeneity of hydrogel networks, which we believe bears general relevance for understanding transport and release of both low- and high molecular weight solutes.

ToC_figure